Test of lepton universality in beauty-quark decays (2024)

Data availability

LHCb data used in this analysis will be released according to the LHCb external data access policy, which can be downloaded from http://opendata.cern.ch/record/410/files/LHCb-Data-Policy.pdf. The raw data in all of the figures of this paper, and additional supplementary material, can be downloaded from https://cds.cern.ch/record/2758740, where no access codes are required. In addition, the likelihood profile shown in Extended Data Fig. 4 has been added to the HEPData platform at https://www.hepdata.net/record/ins1852846?version=1.

Code availability

LHCb software used to process the data analysed in this paper is available at https://gitlab.cern.ch/lhcb.

References

  1. Glashow, S. L., Iliopoulos, J. & Maiani, L. Weak interactions with lepton–hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970).

  2. Particle Data Group et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

  3. Descotes-Genon, S., Hofer, L., Matias, J. & Virto, J. Global analysis of b → s anomalies. J. High. Energy Phys. 06, 092 (2016).

    Article ADS Google Scholar

  4. Bobeth, C., Hiller, G. & Piranishvili, G. Angular distributions of \(\bar{B}\to K\bar{\ell }\ell\) decays. J. High. Energy Phys. 12, 040 (2007).

  5. Bordone, M., Isidori, G. & Pattori, A. On the standard model predictions for RK and \({R}_{{K}^{* }}\). Eur. Phys. J. C76, 440 (2016).

  6. van Dyk, D et al. EOS version 0.3.3. Zenodo https://doi.org/10.5281/zenodo.4586379 (2021).

  7. Straub, D. M. flavio: a python package for flavour and precision phenomenology in the standard model and beyond. Zenodo https://doi.org/10.5281/zenodo.4587748

  8. Isidori, G., Nabeebaccus, S. & Zwicky, R. QED corrections in \(\overline{B}\to \overline{K}{{{{\rm{\ell }}}}}^{+}{{{{\rm{\ell }}}}}^{-}\) at the double-differential level. J. High. Energy Phys. 12, 104 (2020).

  9. Hiller, G. & Krüger, F. More model-independent analysis of b → s processes. Phys. Rev. D 69, 074020 (2004).

  10. Wang, Y. & Atwood, D. Rate difference between b → sμ+μ and b → se+e in supersymmetry with large tan β. Phys. Rev. D 68, 094016 (2003).

  11. Aaij, R. et al. Search for lepton-universality violation in B+ → K++ decays. Phys. Rev. Lett. 122, 191801 (2019).

  12. The LHCb collaboration et al. Test of lepton universality with B0 → K*0+ decays. J. High Energy Phys. 2017, 055 (2017).

  13. The Belle collaboration et al. Test of lepton flavor universality and search for lepton flavor violation in B → K decays. J. High Energy Phys. 2021, 105 (2021).

  14. Wehle, S. et al. Test of lepton-flavor universality in B → K*+ decays at Belle. Phys. Rev. Lett. 126, 161801 (2021).

  15. Lees, J. P. et al. Measurement of branching fractions and rate asymmetries in the rare decays B → K(*)+. Phys. Rev. D 86, 032012 (2012).

  16. Capdevila, B., Descotes-Genon, S., Matias, J. & Virto, J. Assessing lepton-flavour non-universality from B → K* angular analyses. J. High. Energy Phys. 10, 075 (2016).

    Article ADS Google Scholar

  17. Capdevila, B., Descotes-Genon, S., Hofer, L. & Matias, J. Hadronic uncertainties in B → K*μ+μ: a state-of-the-art analysis. J. High. Energy Phys. 04, 016 (2017).

    Article ADS Google Scholar

  18. Serra, N., Silva Coutinho, R. & van Dyk, D. Measuring the breaking of lepton flavor universality in B → K*+. Phys. Rev. D 95, 035029 (2017).

  19. Bharucha, A., Straub, D. M. & Zwicky, R. B → V+ in the standard model from light-cone sum rules. J. High. Energy Phys. 08, 098 (2016).

    Article ADS Google Scholar

  20. Altmannshofer, W., Niehoff, C., Stangl, P. & Straub, D. M. Status of the B → K*μ+μ anomaly after Moriond 2017. Eur. Phys. J. C77, 377 (2017).

    Article ADS Google Scholar

  21. Jäger, S. & Martin Camalich, J. Reassessing the discovery potential of the B → K*+ decays in the large-recoil region: SM challenges and BSM opportunities. Phys. Rev. D 93, 014028 (2016).

  22. Ghosh, D., Nardecchia, M. & Renner, S. A. Hint of lepton flavour non-universality in B meson decays. J. High. Energy Phys. 12, 131 (2014).

    Article ADS Google Scholar

  23. The LHCb collaboration et al. Test of lepton universality using \({\Lambda }_{b}^{0}\to p{K}^{-}{\ell }^{+}{\ell }^{-}\) decays. J. High Energy Phys. 2020, 40 (2020).

  24. Aaij, R. et al. Angular analysis of the B+ → K*+μ+μ decay. Phys. Rev. Lett. 126, 161802 (2021).

  25. Aaij, R. et al. Measurement of CP-averaged observables in the B0 → K*0μ+μ decay. Phys. Rev. Lett. 125, 011802 (2020).

  26. The LHCb collaboration et al. Angular analysis of the B0 → K*0μ+μ decay using 3 fb−1 of integrated luminosity. J. High Energy Phys. 2016, 104 (2016).

  27. The ATLAS collaboration et al. Angular analysis of \({B}_{d}^{0}\to {K}^{* }{\mu }^{+}{\mu }^{-}\) decays in pp collisions at \(\sqrt{s}=8\) TeV with the ATLAS detector. J. High Energy Phys. 2018, 47 (2018).

  28. Aubert, B. et al. Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays B → K+ and B → K*+. Phys. Rev. D 73, 092001 (2006).

  29. Lees, J. P. et al. Measurement of angular asymmetries in the decays B → K*+. Phys. Rev. D 93, 052015 (2016).

  30. Wei J.-T. et al. Measurement of the differential branching fraction and forward-backward asymmetry for B → K(*)+. Phys. Rev. Lett. 103, 171801 (2009).

  31. Wehle, S. et al. Lepton-flavor-dependent angular analysis of B → K*+. Phys. Rev. Lett. 118, 111801 (2017).

  32. Aaltonen, T. et al. Measurements of the angular distributions in the decays B → K(*)μ+μ at CDF. Phys. Rev. Lett. 108, 081807 (2012).

  33. CMS collaboration Angular analysis of the decay B0 → K*0μ+μ from pp collisions at \(\sqrt{s}=8\) TeV. Phys. Lett. B 753, 424–448 (2016).

  34. The CMS collaboration Measurement of angular parameters from the decay B0 → K*0μ+μ in proton-proton collisions at \(\sqrt{s}=\) 8 TeV. Phys. Lett. B 781, 517–541 (2018).

  35. The LHCb collaboration et al. Measurements of the S-wave fraction in B0 → K+πμ+μ decays and the B0 → K*(892)0μ+μ differential branching fraction. J. High Energy Phys. 2016, 47 (2016); erratum 2017, 142 (2017).

  36. The LHCb collaboration et al. Angular analysis and differential branching fraction of the decay \({B}_{s}^{0}\to \phi {\mu }^{+}{\mu }^{-}\). J. High Energy Phys. 2015, 179 (2015).

  37. The LHCb collaboration et al. Differential branching fractions and isospin asymmetries of B → K(*)μ+μ decays. J. High Energy Phys. 2014, 133 (2014).

  38. The LHCb collaboration et al. Differential branching fraction and angular analysis of \({\Lambda }_{b}^{0}\to \Lambda {\mu }^{+}{\mu }^{-}\) decays. J. High Energy Phys. 2015, 115 (2015); erratum 2018, 145 (2018).

  39. Lyon, J., & Zwicky, R. Resonances gone topsy turvy—the charm of QCD or new physics in b → s+? Preprint at https://arxiv.org/abs/1406.0566 (2014).

  40. Khodjamirian, A., Mannel, T. & Wang, Y.-M. B → K+ decay at large hadronic recoil. J. High. Energy Phys. 2013, 010 (2013).

  41. Khodjamirian, A., Mannel, T., Pivovarov, A. A. & Wang, Y.-M. Charm-loop effect in BK(*)+ and BK*γ. J. High Energy Phys. 2010, 89 (2010).

  42. Descotes-Genon, S., Hofer, L., Matias, J. & Virto, J. On the impact of power corrections in the prediction of B → K*μ+μ observables. J. High. Energy Phys. 2014, 125 (2014).

  43. Horgan, R. R., Liu, Z., Meinel, S. & Wingate, M. Calculation of B0 → K*0μ+μ and \({B}_{s}^{0}\to \ \ \phi {\mu }^{+}{\mu }^{-}\) observables using form factors from lattice QCD. Phys. Rev. Lett. 112, 212003 (2014).

  44. Beaujean, F., Bobeth, C. & van Dyk, D. Comprehensive Bayesian analysis of rare (semi)leptonic and radiative B decays. Eur. Phys. J. C 74, 2897 (2014); erratum 74, 3179 (2014).

  45. Hambrock, C., Hiller, G., Schacht, S. & Zwicky, R. B → K* form factors from flavor data to QCD and back. Phys. Rev. D 89, 074014 (2014).

  46. Altmannshofer, W. & Straub, D. M. New physics in B → K*μμ? Eur. Phys. J. C 73, 2646 (2013).

  47. Bobeth, C., Chrzaszcz, M., van Dyk, D. & Virto, J. Long-distance effects in B → K*ℓℓ from analyticity. Eur. Phys. J. C 78, 451 (2018).

  48. Ciuchini, M. et al. Lessons from the B0,+ → K*0,+μ+μ angular analyses. Phys. Rev. D 103, 015030 (2021).

  49. Kowalska, K., Kumar, D. & Sessolo, E. M. Implications for new physics in b → sμμ transitions after recent measurements by Belle and LHCb. Eur. Phys. J. C 79, 840 (2019).

    Article ADS Google Scholar

  50. Algueró, M. et al. Emerging patterns of new physics with and without lepton flavour universal contributions. Eur. Phys. J. C 79, 714 (2019); addendum 80, 511 (2020).

  51. Hurth, T., Mahmoudi, F. & Neshatpour, S. Implications of the new LHCb angular analysis of B → K*μ+μ: hadronic effects or new physics? Phys. Rev. D 102, 055001 (2020).

  52. Ciuchini, M. et al. New physics in b → s+ confronts new data on lepton universality. Eur. Phys. J. C 79, 719 (2019).

  53. Aebischer, J. et al. B-decay discrepancies after Moriond 2019. Eur. Phys. J. C 80, 252 (2020).

  54. Alok, A. K., Dighe, A., Gangal, S. & Kumar, D. Continuing search for new physics in b → sμμ decays: two operators at a time. J. High. Energy Phys. 2019, 89 (2019).

  55. Lees, J. P. et al. Evidence for an excess of \(\overline{B}\to \ \ {D}^{(*)}{\tau }^{-}{\overline{\nu }}_{\tau }\) decays. Phys. Rev. Lett. 109, 101802 (2012).

  56. Aaij, R. et al. Measurement of the ratio of branching fractions \({{{\mathcal{B}}}}({B}_{c}^{+}\to J/\psi {\tau }^{+}{\nu }_{\tau })/{{{\mathcal{B}}}}{{{\mathcal{B}}}}({B}_{c}^{+}\to J/\psi {\mu }^{+}{\nu }_{\mu })\). Phys. Rev. Lett. 120, 121801 (2018).

  57. Lees, J. P. et al. Measurement of an excess of \(\overline{B}\to \ \ {D}^{(*)}{\tau }^{-}{\overline{\nu }}_{\tau }\) decays and implications for charged Higgs bosons. Phys. Rev. D 88, 072012 (2013).

  58. Sato, Y. et al. Measurement of the branching ratio of \({\overline{B}}^{0}\to {D}^{* +}{\tau }^{-}{\overline{\nu }}_{\tau }\) relative to \({\overline{B}}^{0}\to {D}^{* +}{\ell }^{-}{\overline{\nu }}_{\ell }\) decays with a semileptonic tagging method. Phys. Rev. D 94, 072007 (2016).

  59. Aaij, R. et al. Measurement of the ratio of branching fractions \({{{\mathcal{B}}}}({\overline{B}}^{0}\to {D}^{* +}{\tau }^{-}{\overline{\nu }}_{\tau })/{{{\mathcal{B}}}}({\overline{B}}^{0}\to {D}^{* +}{\mu }^{-}{\overline{\nu }}_{\mu })\). Phys. Rev. Lett. 115, 111803 (2015); erratum 115, 159901 (2015).

  60. Huschle, M. et al. Measurement of the branching ratio of \({B}^{0}\to \ \ {D}^{(*)}{\tau }^{-}{\overline{\nu }}_{\tau }\) relative to \(\overline{B}\to \ \ {D}^{(*)}{\ell }^{-}{\overline{\nu }}_{\ell }\) decays with hadronic tagging at Belle. Phys. Rev. D 92, 072014 (2015).

  61. Aaij, R. et al. Test of lepton flavor universality by the measurement of the B0 → D*−τ+ντ branching fraction using three-prong τ decays. Phys. Rev. D 97, 072013 (2018).

  62. Caria, G. et al. Measurement of \({{{\mathcal{R}}}}(D)\) and \({{{\mathcal{R}}}}({D}^{* })\) with a semileptonic tagging method. Phys. Rev. Lett. 124, 161803 (2020).

  63. Hirose, S. et al. Measurement of the τ lepton polarization and R(D*) in the decay \(\overline{B}\to {D}^{* }{\tau }^{-}{\overline{\nu }}_{\tau }\) with one-prong hadronic τ decays at Belle. Phys. Rev. D 97, 012004 (2018).

  64. Aaij, R. et al. Test of lepton universality using B+ → K+ +  decays. Phys. Rev. Lett. 113, 151601 (2014).

  65. Ablikim, M. et al. Precision measurements of \({{{\mathcal{B}}}}[\psi (3686)\to \ \ {\pi }^{+}{\pi }^{-}J/\psi ]\) and \({{{\mathcal{B}}}}[J/\psi \to \ \ {\ell }^{+}{\ell }^{-}]\). Phys. Rev. D 88, 032007 (2013).

  66. Khodjamirian, A. & Rusov, A. V. Bs → Kν and B(s) → π(K)+ decays at large recoil and CKM matrix elements. J. High. Energy Phys. 2017, 112 (2017).

  67. Altmannshofer, W. & Yavin, I. Predictions for lepton flavor universality violation in rare B decays in models with gauged Lμ − Lτ. Phys. Rev. D 92, 075022 (2015).

  68. Geng, L.-S. et al. Towards the discovery of new physics with lepton-universality ratios of b → s decays. Phys. Rev. D 96, 093006 (2017).

  69. Aaij, R. et al. Search for the decays \({B}_{s}^{0}\to {\tau }^{+}{\tau }^{-}\) and B0 → τ+τ. Phys. Rev. Lett. 118, 251802 (2017).

  70. Lees, J. P. et al. Search for B+ → K+τ+τ at the BaBar experiment. Phys. Rev. Lett. 118, 031802 (2017).

  71. LHCb collaboration Physics case for an LHCb upgrade II—opportunities in flavour physics, and beyond, in the HL-LHC era. CERN https://cds.cern.ch/record/2636441 (2019).

  72. Kou, E. et al. The Belle II physics book. Prog. Theor. Exp. Phys. 2019, 123C01 (2019); erratum 2020, 029201 (2020).

  73. Bainbridge, R. on behalf of the CMS collaboration Recording and reconstructing 10 billion unbiased b hadron decays in CMS. EPJ Web Conf. 24, 01025 (2020).

  74. Aad, G. et al. Performance of the ATLAS level-1 topological trigger in run 2. Eur. Phys. J. C 82, 7 (2022).

  75. LHCb collaboration et al. The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008).

  76. LHCb collaboration LHCb detector performance. Int. J. Mod. Phys. A 30, 1530022 (2015).

  77. Gligorov, V. V. & Williams, M. Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree. J. Instrum. 8, P02013 (2013).

  78. Likhomanenko, T. et al. LHCb topological trigger reoptimization. J. Phys. Conf. Ser. 664, 082025 (2015).

    Article Google Scholar

  79. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone C. J. Classification and Regression Trees (Wadsworth, 1984).

  80. Huber, P. J. in Robust Estimation of a Location Parameter (eds Kotz S. & Johnson N. L.) 492–518 (Springer, 1992).

  81. Blum, A., Kalai, A. & Langford J. Beating the hold-out: bounds for K-fold and progressive cross-validation. In Proc. 12th Annual Conference on Computational Learning Theory, COLT ’99 203–208 (ACM, 1999).

  82. Sjöstrand, T., Mrenna, S. & Skands, P. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006, 026 (2006).

  83. Sjöstrand, T., Mrenna, S. & Skands, P. A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008).

    Article ADS MATH Google Scholar

  84. Belyaev, I. et al. Handling of the generation of primary events in Gauss, the LHCb simulation framework. J. Phys. Conf. Ser. 331, 032047 (2011).

    Article Google Scholar

  85. Lange, D. J. The EvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152–155 (2001).

  86. Allison, J. et al. Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270–278 (2006).

  87. Agostinelli, S. et al. Geant4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003).

  88. Clemencic, M. et al. The LHCb simulation application, Gauss: design, evolution and experience. J. Phys. Conf. Ser. 331, 032023 (2011).

    Article Google Scholar

  89. Davidson, N., Przedzinski, T. & Was, Z. PHOTOS interface in C++: technical and physics documentation. Comput. Phys. Commun. 199, 86–101 (2016).

    Article ADS MathSciNet Google Scholar

  90. Aaij, R. et al. Measurement of the electron reconstruction efficiency at LHCb. J. Instrum. 14, P11023 (2019).

  91. Skwarnicki, T. A Study of the Radiative Cascade Transitions between the Upsilon-Prime and Upsilon Resonances. PhD thesis, Institute of Nuclear Physics, Krakow (1986).

  92. Martínez Santos, D. & Dupertuis, F. Mass distributions marginalized over per-event errors. Nucl. Instrum. Methods A 764, 150–155 (2014).

  93. LHCb collaboration et al. Differential branching fraction and angular analysis of the decay B0 → K+I − μ + μ − in the \({K}_{0,2}^{* }{(1430)}^{0}\) region. J. High Energy Phys. 2016, 65 (2016).

  94. LHCb collaboration et al. Measurement of the ratio of branching fractions and difference in CP asymmetries of the decays B+ → J/ψπ+ and B+ → J/ψK+. J. High Energy Phys. 2017, 36 (2017).

Download references

Acknowledgements

We thank our colleagues in the CERN accelerator departments for the excellent performance of the LHC, and the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (United States). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (the Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and NERSC (United States). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. & Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom).

Author information

Authors and Affiliations

  1. Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands

    R. Aaij,J. S. Butter,K. Carvalho Akiba,S. Ferreres Sole,E. Gabriel,R. E. Geertsema,L. M. Greeven,K. Heijhoff,W. Hulsbergen,D. Hynds,E. Jans,S. Klaver,P. Koppenburg,I. Kostiuk,H. S. Kuindersma,M. Lucio Martinez,V. Lukashenko,A. Mauri,M. Merk,A. Pellegrino,C. Sanchez Gras,M. Schubiger,A. Snoch,N. Tuning,A. Usachov,M. van Beuzekom&M. Veronesi

  2. Physik-Institut, Universität Zürich, Zürich, Switzerland

    C. Abellán Beteta,M. Atzeni,R. Bernet,C. Betancourt,Ia. Bezshyiko,A. Buonaura,D. De Simone,V. Denysenko,J. Eschle,M. Ferrillo,D. Lancierini,O. Lantwin,A. Mathad,K. Müller,P. Owen,N. Serra,R. Silva Coutinho,O. Steinkamp&Z. Wang

  3. Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK

    T. Ackernley,T. J. V. Bowco*ck,G. Casse,A. J. Chadwick,C. A. Chavez Barajas,K. Dreimanis,S. Farry,V. Franco Lima,T. Halewood-leagas,J. P. Hammerich,T. Harrison,K. Hennessy,D. Hutchcroft,P. J. Marshall,J. V. Mead,K. Rinnert,E. Rodrigues,T. Shears,K. A. Thomson,E. Vilella Figueras,H. M. Wark&L. E. Yeomans

  4. Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain

    B. Adeva,P. Baladron Rodriguez,O. Boente Garcia,A. Brea Rodriguez,A. Casais Vidal,V. Chobanova,X. Cid Vidal,J. Dalseno,L. Dieste Maronas,A. Fernandez Prieto,A. Gallas Torreira,B. Garcia Plana,A. Gioventù,J. Lomba Castro,D. Martinez Santos,C. J. Parkinson,M. Plo Casasus,C. Prouve,M. Romero Lamas,A. Romero Vidal,J. J. Saborido Silva,C. Santamarina Rios,S. Sellam,R. Vazquez Gomez&P. Vazquez Regueiro

  5. H.H. Wills Physics Laboratory, University of Bristol, Bristol, UK

    M. Adinolfi,S. Bhasin,P. Camargo Magalhaes,M. G. Chapman,R. Lane,S. Maddrell-Mander,L. R. Madhan Mohan,A. M. Marshall,P. Naik,D. P. O’Hanlon,K. Petridis,G. J. Pomery,J. H. Rademacker,J. J. Velthuis,R. Wang,B. D. C. Westhenry&M. Whitehead

  6. Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, MI, France

    H. Afsharnia,Z. Ajaltouni,E. Cogneras,O. Deschamps,R. Lefèvre,J. Maratas,S. Monteil,P. Perret,D. Popov,H. Sazak,L. Soares Lavra&V. Tisserand

  7. University of Michigan, Ann Arbor, USA

    C. A. Aidala,D. S. Fitzgerald,S. H. Lee,K. R. Mattioli,C. Nunez,J. D. Roth&D. M. Shangase

  8. INFN Sezione di Milano, Milano, Italy

    S. Aiola,J. Fu,P. Gandini,L. Henry,D. Marangotto,A. Merli,N. Neri,M. Petruzzo&E. Spadaro Norella

  9. University of Cincinnati, Cincinnati, OH, USA

    S. Akar,P. Ilten,B. Meadows,C. Pappenheimer,M. D. Sokoloff,M. Stahl&D. Vieira

  10. Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

    J. Albrecht,A. Battig,M. Becker,M. S. Bieker,J. A. Boelhauve,L. Calefice,E. Dall’Occo,H.-P. Dembinski,Q. Fuehring,L. L. Gerken,K. Heinicke,S. E. Hollitt,P. Ibis,V. Jevtic,B. Khanji,J. Langer,V. Lisovskyi,P. Mackowiak,G. Meier,A. Mödden,T. Mombächer,N. S. Nolte,M. Saur,M. Schellenberg,A. Seuthe,B. Spaan,H. Stevens&D. Wiedner

  11. European Organization for Nuclear Research (CERN), Geneva, Switzerland

    F. Alessio,L. An,C. Bertella,F. Betti,M. P. Blago,N. Bondar,A. Boyer,M. Brodski,C. Burr,J. Buytaert,W. Byczynski,M. Cattaneo,G. Cavallero,Ph. Charpentier,G. Ciezarek,M. Clemencic,J. Closier,V. Coco,P. Collins,T. Colombo,G. Corti,B. Couturier,C. D’Ambrosio,P. d’Argent,H. Dijkstra,L. Dufour,P. Durante,T. Evans,M. Féo,M. Ferro-Luzzi,R. Forty,M. Frank,C. Frei,W. Funk,S. Gambetta,C. Gaspar,C. Giugliano,E. L. Gkougkousis,E. Govorkova,L. A. Granado Cardoso,T. Gys,C. Haen,J. Haimberger,C. Hasse,M. Hatch,A. M. Hennequin,R. Jacobsson,S. Jakobsen,D. Johnson,B. Jost,N. Jurik,M. Karacson,F. Keizer,R. D. Krawczyk,D. Lacarrere,R. Lindner,B. Malecki,C. Marin Benito,L. Martinazzoli,R. Matev,Z. Mathe,M. Mazurek,M. Mikhasenko,M. Milovanovic,D. S. Mitzel,F. Muheim,M. Mulder,D. Müller,P. Muzzetto,N. Neufeld,P. R. Pais,A. Pearce,M. Pepe Altarelli,M. Petric,F. Pisani,S. Ponce,D. Popov,L. Promberger,P. Roloff,T. Ruf,M. Salomoni,H. Schindler,B. Schmidt,A. Schopper,R. Schwemmer,P. Seyfert,F. Stagni,S. Stahl,M. Szymanski,F. Teubert,E. Thomas,N. Tuning,A. Valassi,C. Vázquez Sierra,K. Wyllie&O. Zenaiev

  12. School of Physics and Astronomy, University of Glasgow, Glasgow, UK

    M. Alexander,D. Bobulska,G. Coombs,L. Douglas,L. Eklund,D. A. Friday,I. Longstaff,M. Petric,G. Sarpis,M. Schiller,F. J. P. Soler&P. Spradlin

  13. ICCUB, Universitat de Barcelona, Barcelona, Spain

    A. Alfonso Albero,A. Camboni,J. M. Fernandez-tenllado Arribas,P. Garcia Moreno,L. Garrido,P. Gironella Gironell,S. Gomez Fernandez,E. Graugés,J. Mauricio&D. Sanchez Gonzalo

  14. Department of Physics and Astronomy, University of Manchester, Manchester, UK

    Z. Aliouche,R. J. Barlow,A. Bitadze,S. Borghi,J. L. Cobbledick,A. Davis,O. De Aguiar Francisco,S. De Capua,D. Dutta,C. Fitzpatrick,E. Gersabeck,M. Gersabeck,L. Grillo,M. Hilton,G. Lafferty,J. J. Lane,A. Lupato,T. H. Mcgrath,A. McNab,B. Mitreska,D. Murray,Y. Pan,C. Parkes,F. Reiss,N. Skidmore,P. Svihra,S. Taneja,D. J. White&G. Zunica

  15. Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia

    G. Alkhazov,A. Andreianov,N. Bondar,A. Chubykin,V. Chulikov,A. Dzyuba,D. Ilin,A. Inglessi,K. Ivshin,S. Kotriakhova,P. Kravchenko,O. Maev,D. Maisuzenko,N. Sagidova,A. Solovev,I. Solovyev,A. Vorobyev&N. Voropaev

  16. Cavendish Laboratory, University of Cambridge, Cambridge, UK

    P. Alvarez Cartelle,F. C. R. Bishop,H. V. Cliff,B. Delaney,V. Gibson,C. R. Jones,G. H. Lovell,J. G. Smeaton,I. Williams&S. A. Wotton

  17. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    S. Amato,L. De Paula,F. Ferreira Rodrigues,M. Gandelman,A. Hicheur,J. H. Lopes,L. Meyer Garcia,I. Nasteva,J. M. Otalora Goicochea,E. Polycarpo,M. S. Rangel,F. L. Souza De Almeida&B. Souza De Paula

  18. Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

    Y. Amhis,S. Barsuk,J. A. B. Coelho,F. Desse,F. Machefert,E. M. Niel,P. Robbe,M. H. Schune&G. Wormser

  19. INFN Sezione di Firenze, Firenze, Italy

    L. Anderlini,A. Bizzeti,G. Graziani,S. Mariani,G. Passaleva&M. Veltri

  20. INFN Sezione di Ferrara, Ferrara, Italy

    M. Andreotti,W. Baldini,C. Bozzi,R. Calabrese,M. Fiorini,E. Franzoso,C. Giugliano,P. Griffith,M. Guarise,S. Kotriakhova,E. Luppi,A. Minotti,L. Minzoni,I. Neri,L. L. Pappalardo,B. Passalacqua,B. G. Siddi,I. Slazyk,L. Tomassetti&S. Vecchi

  21. Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

    F. Archilli,S. Bachmann,D. Berninghoff,M. Borsato,G. Frau,D. Gerick,J. P. Grabowski,P. A. Günther,X. Han,S. Hansmann-Menzemer,J. Hu,R. Kopecna,B. Leverington,P. Li,H. Malygina,J. Marks,D. J. Unverzagt,U. Uwer,C. Wang,L. Witola&A. Zhelezov

  22. Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia

    A. Artamonov,K. Belous,Y. Guz,S. Kholodenko,V. Obraztsov,S. Poslavskii,V. Romanovskiy,M. Shapkin,O. Stenyakin&O. Yushchenko

  23. Syracuse University, Syracuse, NY, USA

    M. Artuso,B. Batsukh,A. Beiter,H. C. Bernstein,S. Blusk,S. Ely,Z. Li,X. Liang,R. Mountain,M. E. Olivares,T. T. H. Pham,M. Poliakova,I. Polyakov,M. S. Rudolph,J. D. Shupperd,T. Skwarnicki,S. Stone,A. Venkateswaran,M. Wilkinson,H. Wu,Y. Yao&X. Yuan

  24. Yandex School of Data Analysis, Moscow, Russia

    K. Arzymatov,V. Belavin,M. Borisyak,T. Gaintseva,A. Philippov,S. Popov,F. Ratnikov&A. Ustyuzhanin

  25. Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

    E. Aslanides,J. Cerasoli,J. Cogan,D. Gerstel,R. Le Gac,O. Leroy,G. Mancinelli,C. Meaux,P. K. Resmi,A. Poluektov,R. I. Rabadan Trejo&D. Vom Bruch

  26. Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

    B. Audurier,V. Balagura,F. Fleuret,F. A. Garcia Rosales&E. Maurice

  27. Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

    M. Bachmayer,A. Bay,V. Bellee,F. Blanc,S. A. Bouchiba,S. Celani,S. Cholak,M. De Cian,S. Ek-In,L. Ferreira Lopes,E. Graverini,G. Haefeli,D. Hill,V. S. Kirsebom,V. Macko,M. Marinangeli,T. Nakada,T. Nanut,T. D. Nguyen,C. Nguyen-Mau,G. Pietrzyk,F. Redi,A. B. Rodrigues,O. Schneider,S. Schulte,L. Shchutska,P. Stefko,M. E. Stramaglia,M. T. Tran,C. Trippl,A. Tully,M. Van Dijk,M. Vieites Diaz&E. Zaffaroni

  28. Department of Physics, University of Warwick, Coventry, UK

    J. J. Back,T. Blake,A. Brossa Gonzalo,M. F. Cicala,C. M. Costa Sobral,L. M. Garcia Martin,T. Gershon,R. J. Hunter,T. P. Jones,M. Kenzie,M. Kreps,T. Latham,O. Lupton,E. Millard,A. G. Morris,B. Pagare,M. Ramos Pernas,N. Sahoo&M. Vesterinen

  29. Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil

    J. Baptista Leite,I. Bediaga,M. Cruz Torres,J. M. De Miranda,A. C. dos Reis,A. Gomes,A. Massafferri,G. Punzi&D. Torres Machado

  30. Imperial College London, London, UK

    W. Barter,M. Birch,M. J. Bradley,A. Golutvin,M. Hecker,F. Kress,T. Lin,M. McCann,R. D. Moise,R. Newcombe,M. Patel,M. Smith&D. Websdale

  31. INFN Sezione di Genova, Genova, Italy

    M. Bartolini,R. Cardinale,F. Fontanelli,A. Petrolini&A. Sergi

  32. National University of Science and Technology ‘MISIS’, Moscow, Russia

    F. Baryshnikov,S. Didenko,A. Golutvin,S. Gromov,A. Ishteev,A. Kondybayeva,S. Legotin,N. Polukhina,D. Saranin,I. Shchemerov,E. Shmanin,O. Steinkamp,D. Strekalina,E. Trifonova,E. Ursov&E. van Herwijnen

  33. I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

    J. M. Basels,L. Carus,S. Escher,A. Guth,J. Heuel,T. Kirn,S. Kretzschmar,C. Langenbruch,M. Materok,S. Nieswand,S. Schael,E. Smith&V. Zhukov

  34. INFN Sezione di Pisa, Pisa, Italy

    G. Bassi,F. Bedeschi,F. Lazzari,A. Lusiani,M. J. Morello,L. Pica,M. Rama,R. Ribatti,G. Tuci&J. Walsh

  35. INFN Sezione di Cagliari, Monserrato, Italy

    S. Belin,D. Brundu,S. Cadeddu,A. Cardini,A. Contu,F. Dettori,F. Dordei,M. Garau,A. Lai,A. Lampis,R. Litvinov,A. Loi,G. Manca,P. Muzzetto,R. Oldeman,B. Saitta&J. Sun

  36. Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia

    I. Belov,A. Berezhnoy,I. V. Gorelov,M. Korolev,A. Leflat,N. Nikitin,D. Savrina&V. Zhukov

  37. Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia

    I. Belyaev,A. Danilina,V. Egorychev,D. Golubkov,P. Gorbounov,A. Konoplyannikov,T. Kvaratskheliya,V. Matiunin,T. Ovsiannikova,D. Pereima,D. Savrina,A. sem*nnikov&A. Smetkina

  38. INFN Laboratori Nazionali di Frascati, Frascati, Italy

    G. Bencivenni,L. Calero Diaz,S. Cali,P. Campana,P. Ciambrone,P. De Simone,P. Di Nezza,M. Giovannetti,G. Lanfranchi,G. Morello,M. Palutan,M. Poli Lener,M. Rotondo,M. Santimaria&B. Sciascia

  39. LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France

    E. Ben-Haim,P. Billoir,L. Calefice,M. Charles,L. Del Buono,S. Esen,M. Fontana,V. V. Gligorov,T. Grammatico,F. Polci,R. Quagliani,D. Y. Tou,P. Vincent&S. G. Weber

  40. Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy

    A. Bertolin,D. Lucchesi,M. Morandin,L. Sestini,G. Simi&D. Zuliani

  41. Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

    J. Bhom,J. T. Borsuk,J. Brodzicka,A. Chernov,M. Chrzaszcz,M. W. Dudek,A. Dziurda,M. Goncerz,M. Jezabek,W. Kucewicz,M. Kucharczyk,T. Lesiak,J. J. Malczewski,A. Ossowska,K. Prasanth,M. Witek&M. Zdybal

  42. School of Physics and Technology, Wuhan University, Wuhan, China

    L. Bian,H. Cai,B. Fang,X. Huang,L. Sun&J. Wang

  43. University of Birmingham, Birmingham, UK

    S. Bifani,R. Calladine,G. Chatzikonstantinidis,N. Cooke,J. Plews,M. W. Slater,P. N. Swallow&N. K. Watson

  44. Università di Modena e Reggio Emilia, Modena, Italy

    A. Bizzeti

  45. Department of Physics, University of Oxford, Oxford, UK

    M. Bjørn,K. M. Fischer,F. Goncalves Abrantes,B. R. Gruberg Cazon,T. H. Hanco*ck,N. Harnew,M. John,L. Li,S. Malde,R. A. Mohammed,C. H. Murphy,T. Pajero,M. Pili,H. Pullen,V. Renaudin,A. Rollings,L. G. Scantlebury Smead,J. C. Smallwood,F. Suljik,G. Wilkinson&Y. Zhang

  46. Massachusetts Institute of Technology, Cambridge, MA, USA

    T. Boettcher,D. C. Craik,O. Kitouni,C. Weisser&M. Williams

  47. National Research University Higher School of Economics, Moscow, Russia

    A. Boldyrev,D. Derkach,M. Hushchyn,M. Karpov,A. Maevskiy,F. Ratnikov,A. Ryzhikov&A. Ustyuzhanin

  48. Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia

    A. Bondar,S. Eidelman,P. Krokovny,V. Kudryavtsev,T. Maltsev,L. Shekhtman&V. Vorobyev

  49. University of Maryland, College Park, MD, USA

    S. Braun,A. D. Fernez,M. Franco Sevilla,P. M. Hamilton,A. Jawahery,W. Parker,Y. Sun&Z. Yang

  50. Guangdong Provencial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China

    A. Bursche,J. Hu,H. Li&G. Liu

  51. Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia

    A. Butkevich,S. Filippov,E. Gushchin,L. Kravchuk&S. Luchuk

  52. Università di Ferrara, Ferrara, Italy

    R. Calabrese,M. Fiorini,P. Griffith,E. Luppi,L. Minzoni,L. L. Pappalardo,I. Slazyk&L. Tomassetti

  53. INFN Sezione di Milano-Bicocca, Milano, Italy

    M. Calvi,S. Capelli,P. Carniti,D. Fazzini,J. García Pardiñas,C. Gotti,M. Martinelli,C. Matteuzzi,S. Meloni&E. B. Shields

  54. Università di Milano Bicocca, Milano, Italy

    M. Calvi,S. Capelli,P. Carniti,D. Fazzini,J. García Pardiñas,L. Martinazzoli,M. Martinelli,S. Meloni&E. B. Shields

  55. DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain

    M. Calvo Gomez,A. Camboni,E. Golobardes,N. Valls Canudas&X. Vilasis-Cardona

  56. University of Chinese Academy of Sciences, Beijing, China

    A. F. Campoverde Quezada,Y. Fan,J. He,W. Huang,H. Liu,X. Lyu,R. Ma,W. Qian,J. Qin,Z. Xiang,J. Xu,Q. Xu,Z. Xu,S. Yang,Y. Yang,Y. Zheng,X. Zhou,Y. Zhou&Z. Zhu

  57. INFN Sezione di Bologna, Bologna, Italy

    L. Capriotti,A. Carbone,A. Falabella,F. Ferrari,D. Galli,S. Maccolini,D. Manuzzi,U. Marconi,C. Patrignani,S. Perazzini,M. Soares,V. Vagnoni,G. Valenti&S. Zucchelli

  58. Università di Bologna, Bologna, Italy

    L. Capriotti,A. Carbone,F. Ferrari,D. Galli,S. Maccolini,D. Manuzzi,C. Patrignani&S. Zucchelli

  59. INFN Sezione di Roma Tor Vergata, Roma, Italy

    G. Carboni,E. Santovetti&A. Satta

  60. Institute Of High Energy Physics (IHEP), Beijing, China

    I. Carli,S. Chen,Y. Li,Y. Li,S. Liu,Y. Lu,L. Ma,M. Tobin,J. Wang&Q. Zou

  61. Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France

    M. Chefdeville,D. Decamp,A. G. Downes,Ph. Ghez,J. F. Marchand,M.-N. Minard,B. Pietrzyk,B. Quintana,M. Reboud&S. T’Jampens

  62. Center for High Energy Physics, Tsinghua University, Beijing, China

    C. Chen,J. Fan,Y. Gan,G. Gong,C. Gu,F. Jiang,Y. Kang,X. Liu,Y. Luo,H. Mu,Z. Ren,J. Wang,M. Wang,Z. Wang,L. Xu,D. Yang,Z. Yang,M. Zeng,L. Zhang&X. Zhu

  63. School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK

    P. E. L. Clarke,R. Currie,S. Eisenhardt,S. Gambetta,K. Gizdov,S. E. Mitchell,F. Muheim,M. Needham,S. Petrucci,G. Robertson,M. R. J. Williams&J. B. Zonneveld

  64. Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

    L. Cojocariu,A. Ene,L. Giubega,A. Grecu,F. Maciuc,V. Placinta&M. Straticiuc

  65. INFN Sezione di Bari, Bari, Italy

    L. Congedo,M. De Serio,R. A. Fini,A. Palano,M. Pappagallo,A. Pastore&S. Simone

  66. Università di Bari, Bari, Italy

    L. Congedo,M. De Serio,M. Pappagallo&S. Simone

  67. Los Alamos National Laboratory (LANL), Los Alamos, NM, USA

    J. Crkovská,C. L. Da Silva,C. T. Dean,J. M. Durham,E. Epple&G. J. Kunde

  68. Van Swinderen Institute, University of Groningen, Groningen, Netherlands

    K. De Bruyn,C. J. G. Onderwater&M. van Veghel

  69. Universiteit Maastricht, Maastricht, Netherlands

    J. A. de Vries,M. Merk&C. J. Pawley

  70. Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland

    A. Dendek,M. Firlej,T. Fiutowski,M. Idzik,P. Kopciewicz,W. Krupa,O. Madejczyk,M. W. Majewski,J. Moron,A. Oblakowska-Mucha,B. Rachwal,J. Ryzka,K. Swientek&T. Szumlak

  71. Università di Cagliari, Cagliari, Italy

    F. Dettori,C. Giugliano,G. Manca,R. Oldeman&B. Saitta

  72. Eotvos Lorand University, Budapest, Hungary

    B. Dey

  73. Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

    V. Dobishuk,S. Koliiev,I. Kostiuk,O. Kot&V. Pugatch

  74. School of Physics, University College Dublin, Dublin, Ireland

    A. M. Donohoe,L. Mcconnell,R. McNulty,N. V. Raab&C. B. Van Hulse

  75. NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

    A. Dovbnya&S. Kandybei

  76. INFN Sezione di Perugia, Perugia, Italy

    V. Duk&M. Piccini

  77. STFC Rutherford Appleton Laboratory, Didcot, UK

    S. Easo,R. Nandakumar,A. Papanestis,S. Ricciardi&F. F. Wilson

  78. School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia

    U. Egede&T. Hadavizadeh

  79. Novosibirsk State University, Novosibirsk, Russia

    S. Eidelman,P. Krokovny,V. Kudryavtsev,T. Maltsev,L. Shekhtman&V. Vorobyev

  80. Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden

    L. Eklund

  81. Università di Genova, Genova, Italy

    F. Fontanelli&A. Petrolini

  82. School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

    Y. Gao,Y. Shang,Z. Shen,J. Wang,A. Xu,Z. Xu,S. Zhang&Y. Zhang

  83. National Center for Nuclear Research (NCBJ), Warsaw, Poland

    H. K. Giemza,K. Klimaszewski,W. Krzemien,D. Melnychuk,A. Szabelski,A. Ukleja&W. Wislicki

  84. Università di Roma Tor Vergata, Roma, Italy

    M. Giovannetti&E. Santovetti

  85. Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

    C. Göbel

  86. Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil

    A. Gomes

  87. Institute of Particle Physics, Central China Normal University, Wuhan, China

    Q. Han,W. Hu,S. Li,Y. Wang,D. Xiao,Y. Xie,M. Xu,H. Yin&D. Zhang

  88. Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China

    J. He

  89. Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain

    L. Henry,B. K. Jashal,F. Martinez Vidal,A. Oyanguren,C. Remon Alepuz&J. Ruiz Vidal

  90. Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands

    T. Ketel,H. S. Kuindersma,G. Raven&M. Senghi Soares

  91. National Research Tomsk Polytechnic University, Tomsk, Russia

    A. Kharisova,G. Panshin&A. Vagner

  92. Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Kraków, Poland

    W. Kucewicz

  93. Università di Siena, Siena, Italy

    F. Lazzari

  94. Università di Padova, Padova, Italy

    D. Lucchesi

  95. Scuola Normale Superiore, Pisa, Italy

    A. Lusiani&M. J. Morello

  96. National Research Centre Kurchatov Institute, Moscow, Russia

    A. Malinin,A. Petrov&V. Shevchenko

  97. Università degli Studi di Milano, Milano, Italy

    D. Marangotto,N. Neri&E. Spadaro Norella

  98. MSU–Iligan Institute of Technology (MSU-IIT), Iligan, Philippines

    J. Maratas

  99. Università di Firenze, Firenze, Italy

    S. Mariani

  100. INFN Sezione di Roma La Sapienza, Roma, Italy

    G. Martellotti,D. Pinci,R. Santacesaria,A. Sarti&C. Satriano

  101. Institut für Physik, Universität Rostock, Rostock, Germany

    N. Meinert,H. Viemann&R. Waldi

  102. Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia

    D. A. Milanes,I. A. Monroy&J. A. Rodriguez Lopez

  103. Universität Bonn Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany

    A. B. Morris,S. Neubert&M. Sarpis

  104. Hanoi University of Science, Hanoi, Vietnam

    C. Nguyen-Mau

  105. Università di Pisa, Pisa, Italy

    L. Pica,G. Punzi&G. Tuci

  106. P.N. Lebedev Physical Institute, Russian Academy of Sciences (LPI RAS), Moscow, Russia

    N. Polukhina&M. Zavertyaev

  107. Università della Basilicata, Potenza, Italy

    C. Satriano

  108. Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

    M. Schmelling&M. Zavertyaev

  109. Università di Urbino, Urbino, Italy

    M. Veltri

  110. Physics and Micro Electronic College, Hunan University, Changsha City, China

    J. Yu

Consortia

LHCb collaboration

  • R. Aaij
  • ,C. Abellán Beteta
  • ,T. Ackernley
  • ,B. Adeva
  • ,M. Adinolfi
  • ,H. Afsharnia
  • ,C. A. Aidala
  • ,S. Aiola
  • ,Z. Ajaltouni
  • ,S. Akar
  • ,J. Albrecht
  • ,F. Alessio
  • ,M. Alexander
  • ,A. Alfonso Albero
  • ,Z. Aliouche
  • ,G. Alkhazov
  • ,P. Alvarez Cartelle
  • ,S. Amato
  • ,Y. Amhis
  • ,L. An
  • ,L. Anderlini
  • ,A. Andreianov
  • ,M. Andreotti
  • ,F. Archilli
  • ,A. Artamonov
  • ,M. Artuso
  • ,K. Arzymatov
  • ,E. Aslanides
  • ,M. Atzeni
  • ,B. Audurier
  • ,S. Bachmann
  • ,M. Bachmayer
  • ,J. J. Back
  • ,P. Baladron Rodriguez
  • ,V. Balagura
  • ,W. Baldini
  • ,J. Baptista Leite
  • ,R. J. Barlow
  • ,S. Barsuk
  • ,W. Barter
  • ,M. Bartolini
  • ,F. Baryshnikov
  • ,J. M. Basels
  • ,G. Bassi
  • ,B. Batsukh
  • ,A. Battig
  • ,A. Bay
  • ,M. Becker
  • ,F. Bedeschi
  • ,I. Bediaga
  • ,A. Beiter
  • ,V. Belavin
  • ,S. Belin
  • ,V. Bellee
  • ,K. Belous
  • ,I. Belov
  • ,I. Belyaev
  • ,G. Bencivenni
  • ,E. Ben-Haim
  • ,A. Berezhnoy
  • ,R. Bernet
  • ,D. Berninghoff
  • ,H. C. Bernstein
  • ,C. Bertella
  • ,A. Bertolin
  • ,C. Betancourt
  • ,F. Betti
  • ,Ia. Bezshyiko
  • ,S. Bhasin
  • ,J. Bhom
  • ,L. Bian
  • ,M. S. Bieker
  • ,S. Bifani
  • ,P. Billoir
  • ,M. Birch
  • ,F. C. R. Bishop
  • ,A. Bitadze
  • ,A. Bizzeti
  • ,M. Bjørn
  • ,M. P. Blago
  • ,T. Blake
  • ,F. Blanc
  • ,S. Blusk
  • ,D. Bobulska
  • ,J. A. Boelhauve
  • ,O. Boente Garcia
  • ,T. Boettcher
  • ,A. Boldyrev
  • ,A. Bondar
  • ,N. Bondar
  • ,S. Borghi
  • ,M. Borisyak
  • ,M. Borsato
  • ,J. T. Borsuk
  • ,S. A. Bouchiba
  • ,T. J. V. Bowco*ck
  • ,A. Boyer
  • ,C. Bozzi
  • ,M. J. Bradley
  • ,S. Braun
  • ,A. Brea Rodriguez
  • ,M. Brodski
  • ,J. Brodzicka
  • ,A. Brossa Gonzalo
  • ,D. Brundu
  • ,A. Buonaura
  • ,C. Burr
  • ,A. Bursche
  • ,A. Butkevich
  • ,J. S. Butter
  • ,J. Buytaert
  • ,W. Byczynski
  • ,S. Cadeddu
  • ,H. Cai
  • ,R. Calabrese
  • ,L. Calefice
  • ,L. Calero Diaz
  • ,S. Cali
  • ,R. Calladine
  • ,M. Calvi
  • ,M. Calvo Gomez
  • ,P. Camargo Magalhaes
  • ,A. Camboni
  • ,P. Campana
  • ,A. F. Campoverde Quezada
  • ,S. Capelli
  • ,L. Capriotti
  • ,A. Carbone
  • ,G. Carboni
  • ,R. Cardinale
  • ,A. Cardini
  • ,I. Carli
  • ,P. Carniti
  • ,L. Carus
  • ,K. Carvalho Akiba
  • ,A. Casais Vidal
  • ,G. Casse
  • ,M. Cattaneo
  • ,G. Cavallero
  • ,S. Celani
  • ,J. Cerasoli
  • ,A. J. Chadwick
  • ,M. G. Chapman
  • ,M. Charles
  • ,Ph. Charpentier
  • ,G. Chatzikonstantinidis
  • ,C. A. Chavez Barajas
  • ,M. Chefdeville
  • ,C. Chen
  • ,S. Chen
  • ,A. Chernov
  • ,V. Chobanova
  • ,S. Cholak
  • ,M. Chrzaszcz
  • ,A. Chubykin
  • ,V. Chulikov
  • ,P. Ciambrone
  • ,M. F. Cicala
  • ,X. Cid Vidal
  • ,G. Ciezarek
  • ,P. E. L. Clarke
  • ,M. Clemencic
  • ,H. V. Cliff
  • ,J. Closier
  • ,J. L. Cobbledick
  • ,V. Coco
  • ,J. A. B. Coelho
  • ,J. Cogan
  • ,E. Cogneras
  • ,L. Cojocariu
  • ,P. Collins
  • ,T. Colombo
  • ,L. Congedo
  • ,A. Contu
  • ,N. Cooke
  • ,G. Coombs
  • ,G. Corti
  • ,C. M. Costa Sobral
  • ,B. Couturier
  • ,D. C. Craik
  • ,J. Crkovská
  • ,M. Cruz Torres
  • ,R. Currie
  • ,C. L. Da Silva
  • ,E. Dall’Occo
  • ,J. Dalseno
  • ,C. D’Ambrosio
  • ,A. Danilina
  • ,P. d’Argent
  • ,A. Davis
  • ,O. De Aguiar Francisco
  • ,K. De Bruyn
  • ,S. De Capua
  • ,M. De Cian
  • ,J. M. De Miranda
  • ,L. De Paula
  • ,M. De Serio
  • ,D. De Simone
  • ,P. De Simone
  • ,J. A. de Vries
  • ,C. T. Dean
  • ,D. Decamp
  • ,L. Del Buono
  • ,B. Delaney
  • ,H.-P. Dembinski
  • ,A. Dendek
  • ,V. Denysenko
  • ,D. Derkach
  • ,O. Deschamps
  • ,F. Desse
  • ,F. Dettori
  • ,B. Dey
  • ,P. Di Nezza
  • ,S. Didenko
  • ,L. Dieste Maronas
  • ,H. Dijkstra
  • ,V. Dobishuk
  • ,A. M. Donohoe
  • ,F. Dordei
  • ,A. C. dos Reis
  • ,L. Douglas
  • ,A. Dovbnya
  • ,A. G. Downes
  • ,K. Dreimanis
  • ,M. W. Dudek
  • ,L. Dufour
  • ,V. Duk
  • ,P. Durante
  • ,J. M. Durham
  • ,D. Dutta
  • ,A. Dziurda
  • ,A. Dzyuba
  • ,S. Easo
  • ,U. Egede
  • ,V. Egorychev
  • ,S. Eidelman
  • ,S. Eisenhardt
  • ,S. Ek-In
  • ,L. Eklund
  • ,S. Ely
  • ,A. Ene
  • ,E. Epple
  • ,S. Escher
  • ,J. Eschle
  • ,S. Esen
  • ,T. Evans
  • ,A. Falabella
  • ,J. Fan
  • ,Y. Fan
  • ,B. Fang
  • ,S. Farry
  • ,D. Fazzini
  • ,M. Féo
  • ,A. Fernandez Prieto
  • ,J. M. Fernandez-tenllado Arribas
  • ,A. D. Fernez
  • ,F. Ferrari
  • ,L. Ferreira Lopes
  • ,F. Ferreira Rodrigues
  • ,S. Ferreres Sole
  • ,M. Ferrillo
  • ,M. Ferro-Luzzi
  • ,S. Filippov
  • ,R. A. Fini
  • ,M. Fiorini
  • ,M. Firlej
  • ,K. M. Fischer
  • ,D. S. Fitzgerald
  • ,C. Fitzpatrick
  • ,T. Fiutowski
  • ,F. Fleuret
  • ,M. Fontana
  • ,F. Fontanelli
  • ,R. Forty
  • ,V. Franco Lima
  • ,M. Franco Sevilla
  • ,M. Frank
  • ,E. Franzoso
  • ,G. Frau
  • ,C. Frei
  • ,D. A. Friday
  • ,J. Fu
  • ,Q. Fuehring
  • ,W. Funk
  • ,E. Gabriel
  • ,T. Gaintseva
  • ,A. Gallas Torreira
  • ,D. Galli
  • ,S. Gambetta
  • ,Y. Gan
  • ,M. Gandelman
  • ,P. Gandini
  • ,Y. Gao
  • ,M. Garau
  • ,L. M. Garcia Martin
  • ,P. Garcia Moreno
  • ,J. García Pardiñas
  • ,B. Garcia Plana
  • ,F. A. Garcia Rosales
  • ,L. Garrido
  • ,C. Gaspar
  • ,R. E. Geertsema
  • ,D. Gerick
  • ,L. L. Gerken
  • ,E. Gersabeck
  • ,M. Gersabeck
  • ,T. Gershon
  • ,D. Gerstel
  • ,Ph. Ghez
  • ,V. Gibson
  • ,H. K. Giemza
  • ,M. Giovannetti
  • ,A. Gioventù
  • ,P. Gironella Gironell
  • ,L. Giubega
  • ,C. Giugliano
  • ,K. Gizdov
  • ,E. L. Gkougkousis
  • ,V. V. Gligorov
  • ,C. Göbel
  • ,E. Golobardes
  • ,D. Golubkov
  • ,A. Golutvin
  • ,A. Gomes
  • ,S. Gomez Fernandez
  • ,F. Goncalves Abrantes
  • ,M. Goncerz
  • ,G. Gong
  • ,P. Gorbounov
  • ,I. V. Gorelov
  • ,C. Gotti
  • ,E. Govorkova
  • ,J. P. Grabowski
  • ,T. Grammatico
  • ,L. A. Granado Cardoso
  • ,E. Graugés
  • ,E. Graverini
  • ,G. Graziani
  • ,A. Grecu
  • ,L. M. Greeven
  • ,P. Griffith
  • ,L. Grillo
  • ,S. Gromov
  • ,B. R. Gruberg Cazon
  • ,C. Gu
  • ,M. Guarise
  • ,P. A. Günther
  • ,E. Gushchin
  • ,A. Guth
  • ,Y. Guz
  • ,T. Gys
  • ,T. Hadavizadeh
  • ,G. Haefeli
  • ,C. Haen
  • ,J. Haimberger
  • ,T. Halewood-leagas
  • ,P. M. Hamilton
  • ,J. P. Hammerich
  • ,Q. Han
  • ,X. Han
  • ,T. H. Hanco*ck
  • ,S. Hansmann-Menzemer
  • ,N. Harnew
  • ,T. Harrison
  • ,C. Hasse
  • ,M. Hatch
  • ,J. He
  • ,M. Hecker
  • ,K. Heijhoff
  • ,K. Heinicke
  • ,A. M. Hennequin
  • ,K. Hennessy
  • ,L. Henry
  • ,J. Heuel
  • ,A. Hicheur
  • ,D. Hill
  • ,M. Hilton
  • ,S. E. Hollitt
  • ,J. Hu
  • ,J. Hu
  • ,W. Hu
  • ,W. Huang
  • ,X. Huang
  • ,W. Hulsbergen
  • ,R. J. Hunter
  • ,M. Hushchyn
  • ,D. Hutchcroft
  • ,D. Hynds
  • ,P. Ibis
  • ,M. Idzik
  • ,D. Ilin
  • ,P. Ilten
  • ,A. Inglessi
  • ,A. Ishteev
  • ,K. Ivshin
  • ,R. Jacobsson
  • ,S. Jakobsen
  • ,E. Jans
  • ,B. K. Jashal
  • ,A. Jawahery
  • ,V. Jevtic
  • ,M. Jezabek
  • ,F. Jiang
  • ,M. John
  • ,D. Johnson
  • ,C. R. Jones
  • ,T. P. Jones
  • ,B. Jost
  • ,N. Jurik
  • ,S. Kandybei
  • ,Y. Kang
  • ,M. Karacson
  • ,M. Karpov
  • ,F. Keizer
  • ,M. Kenzie
  • ,T. Ketel
  • ,B. Khanji
  • ,A. Kharisova
  • ,S. Kholodenko
  • ,T. Kirn
  • ,V. S. Kirsebom
  • ,O. Kitouni
  • ,S. Klaver
  • ,K. Klimaszewski
  • ,S. Koliiev
  • ,A. Kondybayeva
  • ,A. Konoplyannikov
  • ,P. Kopciewicz
  • ,R. Kopecna
  • ,P. Koppenburg
  • ,M. Korolev
  • ,I. Kostiuk
  • ,O. Kot
  • ,S. Kotriakhova
  • ,P. Kravchenko
  • ,L. Kravchuk
  • ,R. D. Krawczyk
  • ,M. Kreps
  • ,F. Kress
  • ,S. Kretzschmar
  • ,P. Krokovny
  • ,W. Krupa
  • ,W. Krzemien
  • ,W. Kucewicz
  • ,M. Kucharczyk
  • ,V. Kudryavtsev
  • ,H. S. Kuindersma
  • ,G. J. Kunde
  • ,T. Kvaratskheliya
  • ,D. Lacarrere
  • ,G. Lafferty
  • ,A. Lai
  • ,A. Lampis
  • ,D. Lancierini
  • ,J. J. Lane
  • ,R. Lane
  • ,G. Lanfranchi
  • ,C. Langenbruch
  • ,J. Langer
  • ,O. Lantwin
  • ,T. Latham
  • ,F. Lazzari
  • ,R. Le Gac
  • ,S. H. Lee
  • ,R. Lefèvre
  • ,A. Leflat
  • ,S. Legotin
  • ,O. Leroy
  • ,T. Lesiak
  • ,B. Leverington
  • ,H. Li
  • ,L. Li
  • ,P. Li
  • ,S. Li
  • ,Y. Li
  • ,Y. Li
  • ,Z. Li
  • ,X. Liang
  • ,T. Lin
  • ,R. Lindner
  • ,V. Lisovskyi
  • ,R. Litvinov
  • ,G. Liu
  • ,H. Liu
  • ,S. Liu
  • ,X. Liu
  • ,A. Loi
  • ,J. Lomba Castro
  • ,I. Longstaff
  • ,J. H. Lopes
  • ,G. H. Lovell
  • ,Y. Lu
  • ,D. Lucchesi
  • ,S. Luchuk
  • ,M. Lucio Martinez
  • ,V. Lukashenko
  • ,Y. Luo
  • ,A. Lupato
  • ,E. Luppi
  • ,O. Lupton
  • ,A. Lusiani
  • ,X. Lyu
  • ,L. Ma
  • ,R. Ma
  • ,S. Maccolini
  • ,F. Machefert
  • ,F. Maciuc
  • ,V. Macko
  • ,P. Mackowiak
  • ,S. Maddrell-Mander
  • ,O. Madejczyk
  • ,L. R. Madhan Mohan
  • ,O. Maev
  • ,A. Maevskiy
  • ,D. Maisuzenko
  • ,M. W. Majewski
  • ,J. J. Malczewski
  • ,S. Malde
  • ,B. Malecki
  • ,A. Malinin
  • ,T. Maltsev
  • ,H. Malygina
  • ,G. Manca
  • ,G. Mancinelli
  • ,D. Manuzzi
  • ,D. Marangotto
  • ,J. Maratas
  • ,J. F. Marchand
  • ,U. Marconi
  • ,S. Mariani
  • ,C. Marin Benito
  • ,M. Marinangeli
  • ,J. Marks
  • ,A. M. Marshall
  • ,P. J. Marshall
  • ,G. Martellotti
  • ,L. Martinazzoli
  • ,M. Martinelli
  • ,D. Martinez Santos
  • ,F. Martinez Vidal
  • ,A. Massafferri
  • ,M. Materok
  • ,R. Matev
  • ,A. Mathad
  • ,Z. Mathe
  • ,V. Matiunin
  • ,C. Matteuzzi
  • ,K. R. Mattioli
  • ,A. Mauri
  • ,E. Maurice
  • ,J. Mauricio
  • ,M. Mazurek
  • ,M. McCann
  • ,L. Mcconnell
  • ,T. H. Mcgrath
  • ,A. McNab
  • ,R. McNulty
  • ,J. V. Mead
  • ,B. Meadows
  • ,C. Meaux
  • ,G. Meier
  • ,N. Meinert
  • ,D. Melnychuk
  • ,S. Meloni
  • ,M. Merk
  • ,A. Merli
  • ,L. Meyer Garcia
  • ,M. Mikhasenko
  • ,D. A. Milanes
  • ,E. Millard
  • ,M. Milovanovic
  • ,M.-N. Minard
  • ,A. Minotti
  • ,L. Minzoni
  • ,S. E. Mitchell
  • ,B. Mitreska
  • ,D. S. Mitzel
  • ,A. Mödden
  • ,R. A. Mohammed
  • ,R. D. Moise
  • ,T. Mombächer
  • ,I. A. Monroy
  • ,S. Monteil
  • ,M. Morandin
  • ,G. Morello
  • ,M. J. Morello
  • ,J. Moron
  • ,A. B. Morris
  • ,A. G. Morris
  • ,R. Mountain
  • ,H. Mu
  • ,F. Muheim
  • ,M. Mulder
  • ,D. Müller
  • ,K. Müller
  • ,C. H. Murphy
  • ,D. Murray
  • ,P. Muzzetto
  • ,P. Naik
  • ,T. Nakada
  • ,R. Nandakumar
  • ,T. Nanut
  • ,I. Nasteva
  • ,M. Needham
  • ,I. Neri
  • ,N. Neri
  • ,S. Neubert
  • ,N. Neufeld
  • ,R. Newcombe
  • ,T. D. Nguyen
  • ,C. Nguyen-Mau
  • ,E. M. Niel
  • ,S. Nieswand
  • ,N. Nikitin
  • ,N. S. Nolte
  • ,C. Nunez
  • ,A. Oblakowska-Mucha
  • ,V. Obraztsov
  • ,D. P. O’Hanlon
  • ,R. Oldeman
  • ,M. E. Olivares
  • ,C. J. G. Onderwater
  • ,A. Ossowska
  • ,J. M. Otalora Goicochea
  • ,T. Ovsiannikova
  • ,P. Owen
  • ,A. Oyanguren
  • ,B. Pagare
  • ,P. R. Pais
  • ,T. Pajero
  • ,A. Palano
  • ,M. Palutan
  • ,Y. Pan
  • ,G. Panshin
  • ,A. Papanestis
  • ,M. Pappagallo
  • ,L. L. Pappalardo
  • ,C. Pappenheimer
  • ,W. Parker
  • ,C. Parkes
  • ,C. J. Parkinson
  • ,B. Passalacqua
  • ,G. Passaleva
  • ,A. Pastore
  • ,M. Patel
  • ,C. Patrignani
  • ,C. J. Pawley
  • ,A. Pearce
  • ,A. Pellegrino
  • ,M. Pepe Altarelli
  • ,S. Perazzini
  • ,D. Pereima
  • ,P. Perret
  • ,M. Petric
  • ,K. Petridis
  • ,A. Petrolini
  • ,A. Petrov
  • ,S. Petrucci
  • ,M. Petruzzo
  • ,T. T. H. Pham
  • ,A. Philippov
  • ,L. Pica
  • ,M. Piccini
  • ,B. Pietrzyk
  • ,G. Pietrzyk
  • ,M. Pili
  • ,D. Pinci
  • ,F. Pisani
  • ,P. K. Resmi
  • ,V. Placinta
  • ,J. Plews
  • ,M. Plo Casasus
  • ,F. Polci
  • ,M. Poli Lener
  • ,M. Poliakova
  • ,A. Poluektov
  • ,N. Polukhina
  • ,I. Polyakov
  • ,E. Polycarpo
  • ,G. J. Pomery
  • ,S. Ponce
  • ,D. Popov
  • ,S. Popov
  • ,S. Poslavskii
  • ,K. Prasanth
  • ,L. Promberger
  • ,C. Prouve
  • ,V. Pugatch
  • ,H. Pullen
  • ,G. Punzi
  • ,W. Qian
  • ,J. Qin
  • ,R. Quagliani
  • ,B. Quintana
  • ,N. V. Raab
  • ,R. I. Rabadan Trejo
  • ,B. Rachwal
  • ,J. H. Rademacker
  • ,M. Rama
  • ,M. Ramos Pernas
  • ,M. S. Rangel
  • ,F. Ratnikov
  • ,G. Raven
  • ,M. Reboud
  • ,F. Redi
  • ,F. Reiss
  • ,C. Remon Alepuz
  • ,Z. Ren
  • ,V. Renaudin
  • ,R. Ribatti
  • ,S. Ricciardi
  • ,K. Rinnert
  • ,P. Robbe
  • ,G. Robertson
  • ,A. B. Rodrigues
  • ,E. Rodrigues
  • ,J. A. Rodriguez Lopez
  • ,A. Rollings
  • ,P. Roloff
  • ,V. Romanovskiy
  • ,M. Romero Lamas
  • ,A. Romero Vidal
  • ,J. D. Roth
  • ,M. Rotondo
  • ,M. S. Rudolph
  • ,T. Ruf
  • ,J. Ruiz Vidal
  • ,A. Ryzhikov
  • ,J. Ryzka
  • ,J. J. Saborido Silva
  • ,N. Sagidova
  • ,N. Sahoo
  • ,B. Saitta
  • ,M. Salomoni
  • ,D. Sanchez Gonzalo
  • ,C. Sanchez Gras
  • ,R. Santacesaria
  • ,C. Santamarina Rios
  • ,M. Santimaria
  • ,E. Santovetti
  • ,D. Saranin
  • ,G. Sarpis
  • ,M. Sarpis
  • ,A. Sarti
  • ,C. Satriano
  • ,A. Satta
  • ,M. Saur
  • ,D. Savrina
  • ,H. Sazak
  • ,L. G. Scantlebury Smead
  • ,S. Schael
  • ,M. Schellenberg
  • ,M. Schiller
  • ,H. Schindler
  • ,M. Schmelling
  • ,B. Schmidt
  • ,O. Schneider
  • ,A. Schopper
  • ,M. Schubiger
  • ,S. Schulte
  • ,M. H. Schune
  • ,R. Schwemmer
  • ,B. Sciascia
  • ,S. Sellam
  • ,A. sem*nnikov
  • ,M. Senghi Soares
  • ,A. Sergi
  • ,N. Serra
  • ,L. Sestini
  • ,A. Seuthe
  • ,P. Seyfert
  • ,Y. Shang
  • ,D. M. Shangase
  • ,M. Shapkin
  • ,I. Shchemerov
  • ,L. Shchutska
  • ,T. Shears
  • ,L. Shekhtman
  • ,Z. Shen
  • ,V. Shevchenko
  • ,E. B. Shields
  • ,E. Shmanin
  • ,J. D. Shupperd
  • ,B. G. Siddi
  • ,R. Silva Coutinho
  • ,G. Simi
  • ,S. Simone
  • ,N. Skidmore
  • ,T. Skwarnicki
  • ,M. W. Slater
  • ,I. Slazyk
  • ,J. C. Smallwood
  • ,J. G. Smeaton
  • ,A. Smetkina
  • ,E. Smith
  • ,M. Smith
  • ,A. Snoch
  • ,M. Soares
  • ,L. Soares Lavra
  • ,M. D. Sokoloff
  • ,F. J. P. Soler
  • ,A. Solovev
  • ,I. Solovyev
  • ,F. L. Souza De Almeida
  • ,B. Souza De Paula
  • ,B. Spaan
  • ,E. Spadaro Norella
  • ,P. Spradlin
  • ,F. Stagni
  • ,M. Stahl
  • ,S. Stahl
  • ,P. Stefko
  • ,O. Steinkamp
  • ,O. Stenyakin
  • ,H. Stevens
  • ,S. Stone
  • ,M. E. Stramaglia
  • ,M. Straticiuc
  • ,D. Strekalina
  • ,F. Suljik
  • ,J. Sun
  • ,L. Sun
  • ,Y. Sun
  • ,P. Svihra
  • ,P. N. Swallow
  • ,K. Swientek
  • ,A. Szabelski
  • ,T. Szumlak
  • ,M. Szymanski
  • ,S. Taneja
  • ,F. Teubert
  • ,E. Thomas
  • ,K. A. Thomson
  • ,V. Tisserand
  • ,S. T’Jampens
  • ,M. Tobin
  • ,L. Tomassetti
  • ,D. Torres Machado
  • ,D. Y. Tou
  • ,M. T. Tran
  • ,E. Trifonova
  • ,C. Trippl
  • ,G. Tuci
  • ,A. Tully
  • ,N. Tuning
  • ,A. Ukleja
  • ,D. J. Unverzagt
  • ,E. Ursov
  • ,A. Usachov
  • ,A. Ustyuzhanin
  • ,U. Uwer
  • ,A. Vagner
  • ,V. Vagnoni
  • ,A. Valassi
  • ,G. Valenti
  • ,N. Valls Canudas
  • ,M. van Beuzekom
  • ,M. Van Dijk
  • ,E. van Herwijnen
  • ,C. B. Van Hulse
  • ,M. van Veghel
  • ,R. Vazquez Gomez
  • ,P. Vazquez Regueiro
  • ,C. Vázquez Sierra
  • ,S. Vecchi
  • ,J. J. Velthuis
  • ,M. Veltri
  • ,A. Venkateswaran
  • ,M. Veronesi
  • ,M. Vesterinen
  • ,D. Vieira
  • ,M. Vieites Diaz
  • ,H. Viemann
  • ,X. Vilasis-Cardona
  • ,E. Vilella Figueras
  • ,P. Vincent
  • ,D. Vom Bruch
  • ,A. Vorobyev
  • ,V. Vorobyev
  • ,N. Voropaev
  • ,R. Waldi
  • ,J. Walsh
  • ,C. Wang
  • ,J. Wang
  • ,J. Wang
  • ,J. Wang
  • ,J. Wang
  • ,M. Wang
  • ,R. Wang
  • ,Y. Wang
  • ,Z. Wang
  • ,Z. Wang
  • ,H. M. Wark
  • ,N. K. Watson
  • ,S. G. Weber
  • ,D. Websdale
  • ,C. Weisser
  • ,B. D. C. Westhenry
  • ,D. J. White
  • ,M. Whitehead
  • ,D. Wiedner
  • ,G. Wilkinson
  • ,M. Wilkinson
  • ,I. Williams
  • ,M. Williams
  • ,M. R. J. Williams
  • ,F. F. Wilson
  • ,W. Wislicki
  • ,M. Witek
  • ,L. Witola
  • ,G. Wormser
  • ,S. A. Wotton
  • ,H. Wu
  • ,K. Wyllie
  • ,Z. Xiang
  • ,D. Xiao
  • ,Y. Xie
  • ,A. Xu
  • ,J. Xu
  • ,L. Xu
  • ,M. Xu
  • ,Q. Xu
  • ,Z. Xu
  • ,Z. Xu
  • ,D. Yang
  • ,S. Yang
  • ,Y. Yang
  • ,Z. Yang
  • ,Z. Yang
  • ,Y. Yao
  • ,L. E. Yeomans
  • ,H. Yin
  • ,J. Yu
  • ,X. Yuan
  • ,O. Yushchenko
  • ,E. Zaffaroni
  • ,M. Zavertyaev
  • ,M. Zdybal
  • ,O. Zenaiev
  • ,M. Zeng
  • ,D. Zhang
  • ,L. Zhang
  • ,S. Zhang
  • ,Y. Zhang
  • ,Y. Zhang
  • ,A. Zhelezov
  • ,Y. Zheng
  • ,X. Zhou
  • ,Y. Zhou
  • ,X. Zhu
  • ,Z. Zhu
  • ,V. Zhukov
  • ,J. B. Zonneveld
  • ,Q. Zou
  • ,S. Zucchelli
  • ,D. Zuliani
  • &G. Zunica

Contributions

All contributing authors, as listed at the end of the manuscript, have contributed to the publication, being variously involved in the design and construction of the detector, writing software, calibrating sub-systems, operating the detector, acquiring data and analysing the processed data.

Corresponding author

Correspondence to A. Bertolin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Akimasa Ishikawa, Marcella Bona and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Simulated K+e− mass distributions for signal and various cascade background samples.

The signal is represented by the orange shaded region and the various cascade background contributions by red, dark blue and light blue shaded regions. The distributions are all normalised to unity. (Left, with log y-scale) the bremsstrahlung correction to the momentum of the electron is applied, resulting in a tail to the right. The region to the left of the vertical dashed line is rejected. (Right, with linear y-scale) the mass is computed only from the track information. The notation \({\pi }_{[\to {e}^{-}]}^{-}\) (\({e}_{[\to {\pi }^{-}]}^{-}\)) is used to denote an pion (electron) that is reconstructed as an electron (pion). The region between the dashed vertical lines is rejected.

Extended Data Fig. 2 Nonresonant candidates invariant mass distributions.

Distribution of the invariant mass m(K++) for nonresonant candidates in the (left) sample previously analysed11 and (right) the new data sample. The top row shows the fit to the muon modes and the subsequent rows the fits to the electron modes triggered by (second row) one of the electrons, (third row) the kaon and (last row) by other particles in the event. The fit projections are superimposed, with dotted lines describing the signal contribution and solid areas representing each of the background components described in the text and listed in the legend. Uncertainties on the data points are statistical only and represent one standard deviation, calculated assuming Poisson-distributed entries. The y-axis in each figure shows the number of candidates in an interval of the indicated width.

Extended Data Fig. 3 Resonant candidates invariant mass distributions.

Distribution of the invariant mass mJ/ψ(K++) for resonant candidates in the (left) sample previously analysed11 and (right) the new data sample. The top row shows the fit to the muon modes and the subsequent rows the fits to the electron modes triggered by (second row) one of the electrons, (third row) the kaon and (last row) by other particles in the event. The fit projections are superimposed, with dotted lines describing the signal contribution and solid areas representing each of the background components described in the text and listed in the legend. Uncertainties on the data points are statistical only and represent one standard deviation, calculated assuming Poisson-distributed entries. The y-axis in each figure shows the number of candidates in an interval of the indicated width.

Extended Data Fig. 4 Likelihood function from the fit to the nonresonant B+ → K+ℓ+ℓ− candidates.

Ratio between the likelihood value (L) and that found by the fit (\({L}_{\max }\)) as a function of RK. The extent of the dark, medium and light blue regions shows the values allowed for RK at 1σ, 3σ and 5σ levels. The red line indicates the prediction from the SM.

Extended Data Fig. 5 Differential rJ/ψ measurement.

(Top) distributions of the reconstructed spectra of (left) the angle between the leptons, α(+, ), and (right) the minimum pT of the leptons for B+ → K++ and B+ → J/ψ( → +)K+ decays. (Bottom) the single ratio rJ/ψ relative to its average value \(< {r}_{J/\psi } >\) as a function of these variables. In the electron minimum pT spectra, the structure at 2800 MeV/c is related to the trigger threshold. Uncertainties on the data points are statistical only and represent one standard deviation.

Extended Data Fig. 6 Double differential rJ/ψ measurement.

(Left) the value of rJ/ψ, relative to the average value of rJ/ψ, measured in two-dimensional bins of the maximum lepton momentum, p(), and the opening angle between the two leptons, α(+, ). (Right) the bin definition in this two-dimensional space together with the distribution for B+ → K+e+e (B+ → J/ψ( → e+e)K+) decays depicted as red (blue) contours. Uncertainties on the data points are statistical only and represent one standard deviation.

Extended Data Fig. 7 Distribution of m(K+e+e−) in simulated B+ → K+e+e− decays.

Distribution of m(K+e+e) in simulated B+ → K+e+e decays. The orange shaded area corresponds to B+ → K+e+e candidates with true q2 (\({q}_{{{{\rm{t}}}}rue}^{2}\)) outside the [1.1, 6.0] GeV 2/c4 interval. The green and purple components correspond to candidates with \({q}_{{{{\rm{t}}}}rue}^{2} > 6.0\) GeV 2/c4 and \({q}_{{{{\rm{t}}}}rue}^{2} < 1.1\) GeV 2/c4, respectively. Linear (top) and logarithmic (bottom) scales are shown.

Extended Data Fig. 8 Candidate invariant mass distributions.

Distribution of the invariant mass m(K+e+e) for B+ → K+e+e candidates. The fit projection is superimposed, with a black dotted line describing the signal contribution and solid areas representing each of the background components described in the text and listed in the legend. For illustration, the expected distribution of signal candidates with true q2 outside the interval [1.1, 6.0]GeV2/c4 is shown as a grey dashed and dotted line. Uncertainties on the data points are statistical only and represent one standard deviation, calculated assuming Poisson-distributed entries. The y-axis in each figure shows the number of candidates in an interval of the indicated width.

Extended Data Table 1 Nonresonant and resonant mode q2 and m(K+ℓ+ℓ−) ranges.

The variables m(K++) and mJ/ψ(K++) are used for nonresonant and resonant decays, respectively.

Extended Data Table 2 Yields of the nonresonant and resonant decay modes.

Yields of the nonresonant and resonant decay modes obtained from the fits to the data. The quoted uncertainty is the combination of statistical and systematic effects.

Supplementary information

Supplementary information

Supplementary references.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Test of lepton universality in beauty-quark decays (1)

Cite this article

LHCb collaboration. Test of lepton universality in beauty-quark decays. Nat. Phys. 18, 277–282 (2022). https://doi.org/10.1038/s41567-021-01478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01478-8

Test of lepton universality in beauty-quark decays (2024)

References

Top Articles
Latest Posts
Article information

Author: Clemencia Bogisich Ret

Last Updated:

Views: 6428

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Clemencia Bogisich Ret

Birthday: 2001-07-17

Address: Suite 794 53887 Geri Spring, West Cristentown, KY 54855

Phone: +5934435460663

Job: Central Hospitality Director

Hobby: Yoga, Electronics, Rafting, Lockpicking, Inline skating, Puzzles, scrapbook

Introduction: My name is Clemencia Bogisich Ret, I am a super, outstanding, graceful, friendly, vast, comfortable, agreeable person who loves writing and wants to share my knowledge and understanding with you.